Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
J Invertebr Pathol ; 204: 108095, 2024 Mar 16.
Artigo em Inglês | MEDLINE | ID: mdl-38499284

RESUMO

Epoxyoctadecamonoenoic acids (EpOMEs) are produced from linoleic acid by a cytochrome P450 monooxygenase (CYP) and play a crucial role in terminating excessive and unnecessary immune responses during the late infection stage in insects. This suggests that an increase in the EpOME level may enhance the virulence of insect pathogens against pests. This study tested this hypothesis using a specific inhibitor against soluble epoxide hydrolase (sEH) to degrade EpOMEs, which leads to elevated endogenous EpOME levels. A baculovirus, Autographa californica multiple nucleopolyhedrovirus (AcMNPV), was used to infect three different lepidopteran insects (Spodoptera exigua, Maruca vitrata, and Plutella xylostella) by oral feeding or hemocoelic injection treatments. Within one hour, the viral infection induced the expression of three different phospholipase A2 (PLA2) genes and, after 12 h, up-regulated the expressions of CYP and sEH genes in Spodopera exigua. As expected, AcMNPV virulence was suppressed by the addition of arachidonic acid (a catalytic product of PLA2) but was enhanced by the addition of either of the EpOME regioisomers. In addition, treatment with a specific sEH inhibitor (AUDA) increased AcMNPV virulence against three different lepidopteran insects, presumably by increasing endogenous EpOME levels. This enhanced effect of EpOMEs on virulence was further supported by specific RNA interference (RNAi), in which RNAi specific to CYP expression decreased AcMNPV virulence while a specific RNAi against sEH expression significantly enhanced virulence. In response to AcMNPV infection, TUNEL assay results showed that S. exigua larvae exhibited apoptosis in the midgut, fat body, and epidermis. Inhibition of apoptosis by a pan-caspase inhibitor, Z-VAD-FMK, significantly increased virulence. Similarly, the addition of AUDA to the viral treatment suppressed the gene expression of five inducible caspases and cytochrome C to suppress apoptosis, which led to a significant increase in the tissue viral titers. These results indicate that EpOMEs play a role in terminating excessive and unnecessary immune responses against viral infection during the late stage by down-regulating antiviral apoptosis in lepidopteran insects.

2.
PLoS One ; 19(2): e0290929, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38319944

RESUMO

Honeybees require an efficient immune system to defend against microbial pathogens. The American foulbrood pathogen, Paenibacillus larvae, is lethal to honeybees and one of the main causes of colony collapse. This study investigated the immune responses of Apis mellifera and Apis cerana honeybees against the bacterial pathogen P. larvae. Both species of honeybee larvae exhibited significant mortality even at 102 103 cfu/mL of P. larvae by diet-feeding, although A. mellifera appeared to be more tolerant to the bacterial pathogen than A. cerana. Upon bacterial infection, the two honeybee species expressed both cellular and humoral immune responses. Hemocytes of both species exhibited characteristic spreading behaviors, accompanied by cytoskeletal extension along with F-actin growth, and formed nodules. Larvae of both species also expressed an antimicrobial peptide called apolipophorin III (ApoLpIII) in response to bacterial infection. However, these immune responses were significantly suppressed by a specific inhibitor to phospholipase A2 (PLA2). Each honeybee genome encodes four PLA2 genes (PLA2A ~ PLA2D), representing four orthologous combinations between the two species. In response to P. larvae infection, both species significantly up-regulated PLA2 enzyme activities and the expression of all four PLA2 genes. To determine the roles of the four PLA2s in the immune responses, RNA interference (RNAi) was performed by injecting gene-specific double stranded RNAs (dsRNAs). All four RNAi treatments significantly suppressed the immune responses, and specific inhibition of the two secretory PLA2s (PLA2A and PLA2B) potently suppressed nodule formation and ApoLpIII expression. These results demonstrate the cellular and humoral immune responses of A. mellifera and A. cerana against P. larvae. This study suggests that eicosanoids play a crucial role in mediating common immune responses in two closely related honeybees.


Assuntos
Infecções Bacterianas , Paenibacillus larvae , Abelhas , Animais , Paenibacillus larvae/fisiologia , Larva , Dieta , Fosfolipases A2
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...